Mathematics of Origami

Angela Kohlhaas
Loras College
February 17, 2012
Introduction

- Origami
 - *ori* + *kami*, “folding paper”
 - Tools: one uncut square of paper, mountain and valley folds
 - Goal: create art with elegance, balance, detail

- Outline
 - History
 - Applications
 - Foldability
 - Design
History of Origami

- 105 A.D.: Invention of paper in China
 - Paper-folding begins shortly after in China, Korea, Japan
- 800s: Japanese develop basic models for ceremonial folding
- 1200s: Origami globalized throughout Japan
- 1682: Earliest book to describe origami
- 1797: *How to fold 1,000 cranes* published
- 1954: Yoshizawa’s book formalizes a notational system
- 1940s-1960s: Origami popularized in the U.S. and throughout the world
History of Origami Mathematics

- 1893: *Geometric exercises in paper folding* by Row
- 1936: Origami first analyzed according to axioms by Beloch
- 1989-present:
 - Huzita-Hatori axioms
 - Flat-folding theorems: Maekawa, Kawasaki, Justin, Hull
 - TreeMaker designed by Lang
 - *Origami sekkei* – “technical origami”
 - Rigid origami
 - Applications from the large to very small
Miura-Ori

- Japanese solar sail
“Eyeglass” space telescope

- Lawrence Livermore National Laboratory
Science of the small

- Heart stents
- Titanium hydride printing
- DNA origami
- Protein-folding
Two broad categories

- **Foldability (discrete, computational complexity)**
 - Given a pattern of creases, when does the folded model lie flat?

- **Design (geometry, optimization)**
 - How much detail can be added to an origami model, and how efficiently can this be done?
Flat-Foldability of Crease Patterns

- Three criteria for φ:
 - Continuity
 - Piecewise isometry
 - Noncrossing
2-Colorable

- Under the mapping φ, some faces are flipped while others are only translated and rotated.
Maekawa-Justin Theorem

At any interior vertex, the number of mountain and valley folds differ by two.
Kawasaki-Justin Theorem

At any interior vertex, a given crease pattern can be folded flat if and only if alternating angles sum to 180 degrees.
Layer ordering

- No self-intersections
 - A face cannot penetrate another face
 - A face cannot penetrate a fold
 - A fold cannot penetrate a fold

- Global flat-foldability is hard!
 - NP-complete
Map-folding Problem

Given a rectangle partitioned into an m by n grid of squares with mountain/valley crease assignments, can the map be folded flat into one square?
Origami design

- Classic origami (intuition and trial-and-error):

- Origami sekkei (intuition and algorithms): [examples](#)

- What changed?
 - Appendages were added efficiently
 - Paper usage was optimized
Classic bases

- Kite base
- Bird base
- Fish base
- Frog base
Classic bases

- Kite base
- Bird base
- Fish base
- Frog base
Suppose we want to design an origami creature with \(n \) appendages of equal length. What is the most efficient use of paper? That is, how can we make the appendages as long as possible?
Circle-packing!
Circle-packing!
$n=25$ Sea Urchin

- TreeMaker examples
Prove that no matter how one folds a square napkin, the flattened shape can never have a perimeter that exceeds the perimeter of the original square.
Re-cap

- An ancient art modernized by mathematical methods
- Origami is like math: applications may be centuries behind
- Foldability
 - 2-coloring, local vertex conditions, noncrossing
 - Map-folding
- Design
 - Circle-packing
 - TreeMaker
- Flipside: origami methods can be useful in math, too!
References

