Pictures of Monomial Ideals

Angela Kohlhaas

Bi-State Math Colloquium
February 20, 2013

Why study ideals?

For now, think of ideals as sets of polynomials

- Solving Equations o Systems of Equations
o Linear
- Quadratic
- Cubic
- Higher degree?
- Several variables
- Linear
o Higher degree?

Ideals arise in Ring Theory

A ring \boldsymbol{R} (commutative, with identity) is a set with the following properties:

- Closed under addition and multiplication
- Associative and commutative under addition and multiplication
- Additive identity (0)
- Additive inverses
- Multiplicative identity (1)
- May NOT have multiplicative inverses
o If all nonzero elements do, it's called a field.

Examples of Rings

$\bigcirc \mathbb{R}$, the set of real numbers
○ \mathbb{Q}, the set of rational numbers
$\bigcirc \mathbb{Z}$, the set of integers
○ $\mathbb{Z}[x]$, polynomials in one variable with integer coefficients

○ $\mathbb{R}[x, y]$, polynomials in two variables with real coefficients

Ideals

An ideal \boldsymbol{I} is a subset of a ring R satisfying the following property:

- If f, g are in I, then $a f+b g$ is in I for any a, b in R.
- That is, I is closed under linear combinations with coefficients in the ring.
- Closed under addition
- Closed under "scalar" multiplication

Examples of Ideals

$$
\begin{aligned}
& \circ R=\mathbb{Z}, I=(5) \\
& \qquad \begin{aligned}
\circ R= & \{5 a: a \in \mathbb{Z}\} \\
= & \left\{a(x, y], I=\left(x^{2}-x y\right)+b(3 x+y): a, b \in R\right\} \\
\circ R= & \mathbb{R}[x, y], I=\left(x^{2}, x y^{3}, y^{5}\right) \\
& =\left\{a x^{2}+b x y^{3}+c y^{5}: a, b, c \in R\right\}
\end{aligned}
\end{aligned}
$$

- Each generator is a monomial, a single term

Rings mimic the Integers

o Prime factorization / Primary decomposition
o $\ln \mathbb{Z}$, factor 200
o $\ln \mathbb{R}[x, y]$, factor $x^{4} y-x^{3} y^{2}$
o What about (200) and $\left(x^{2}, x y^{3}, y^{5}\right)$?

- Modular arithmetic / Quotient rings
$\circ \mathbb{Z} /(5)=\{a+(5): a \in \mathbb{Z}\}$
$\circ \mathbb{R}[x, y] /\left(x^{2}, x y^{3}, y^{5}\right)=$?
० Allows us to find the dimension or "size"

Pictures!

$$
I=\left(x^{2}, x y^{3}, y^{5}\right)
$$

$$
I=\left(x^{2}, x y^{3}, y^{5}\right)
$$

Dimension of R / I ?

Primary Decomposition

$$
I=\left(\mathrm{x}^{4}, \mathrm{x}^{3} y^{2}, x^{2} y^{4}, y^{5}\right)
$$

$I=\left(\mathrm{x}^{4}, \mathrm{x}^{3} y^{2}, x^{2} y^{4}, y^{5}\right)$

Primary Decomposition?

What if $R=\mathbb{R}[x, y, z]$?
 Let $I=\left(x^{3}, y^{4}, z^{2}, x y^{2} z\right)$.

o Diagram: think R / I

- Dimension of R / I ?
o Primary Decomposition?

Colon Ideals

Let H and I be ideals in a ring R with H contained in I.

OThen $H: I=\{a \in R: a I \subseteq H\}$
o That is, $H: I$ is the set of elements of the ring which move all elements of I into H.

$$
I=\left(x^{2}, x y^{3}, y^{5}\right) \quad H=\left(x^{2}, y^{5}\right)
$$

$$
I=\left(x^{2}, x y^{3}, y^{5}\right) \quad H=\left(x^{2}, y^{5}\right)
$$

$$
I=\left(x^{2}, x y^{3}, y^{5}\right) \quad H=\left(x^{2}, y^{5}\right)
$$

$$
I=\left(x^{2}, x y^{3}, y^{5}\right) \quad H=\left(x^{2}, y^{5}\right)
$$

$H: J=\left(x, y^{2}\right)$

$$
I=\left(x^{4}, x^{3} y^{2}, x^{2} y^{4}, y^{5}\right) \quad H=\left(x^{4}, y^{5}\right)
$$

$$
I=\left(x^{4}, x^{3} y^{2}, x^{2} y^{4}, y^{5}\right) \quad H=\left(x^{4}, y^{5}\right)
$$

$$
I=\left(x^{4}, x^{3} y^{2}, x^{2} y^{4}, y^{5}\right) \quad H=\left(x^{4}, y^{5}\right)
$$

Reductions of Ideals

o Reductions are simpler ideals contained in a larger ideal with similar properties.
o "Simpler" usually means fewer generators.
o Most minimal reductions are not monomial, but their intersection is.

The Core of an Ideal

o The core of an ideal I is the intersection of all reductions of I.
o If I is monomial, so is core (I).

- Cores have symmetry similar to colon ideals.

$$
I=\left(x^{2}, x y^{3}, y^{5}\right) \quad \operatorname{core}(I)
$$

$$
I=\left(x^{4}, x^{3} y^{2}, x^{2} y^{4}, y^{5}\right) \quad \operatorname{core}(I)
$$

$$
I=\left(x^{11}, x^{9} y^{2}, x^{6} y^{3}, x^{5} y^{5}, x^{4} y^{6}, x^{2} y^{7}, x y^{9}, y^{10}\right)
$$

$$
I=\left(x^{11}, x^{9} y^{2}, x^{6} y^{3}, x^{5} y^{5}, x^{4} y^{6}, x^{2} y^{7}, x y^{9}, y^{10}\right)
$$

$$
I=\left(x^{6}, y^{4}, z^{5}, x^{2} y z\right) \quad \operatorname{core}(I)
$$

Why study monomial ideals?

- Can reduce more complicated ideals to monomial ideals with similar properties (Gröbner basis theory).
- Monomial ideals can be studied with combinatorial methods, not just algebraic.
o They are algorithmic, easy to program.

