The core and the adjoint: A condition for equality
Angela Kohlhaas, University of Notre Dame

Assumptions and questions of research

Assumptions: Let \(R = k[x_1, \ldots, x_n] \) be a polynomial ring over a field \(k \) of characteristic zero with \(m = (x_1, \ldots, x_n) \). Let \(J \) be an \(m \)-primary ideal of \(R \) (\(m^n \not\subset J \) for some \(n \)).

Question 1: When is core of an ideal equal to the adjoint of its \(d \)-th power?

Question 2: Is there a combinatorial description for the core of a monomial ideal?

History of core and adjoint relationship

The theorem below was the original connection made between the core and the adjoint.

Theorem: (Lipman, generalized by Ulrich) Let \(J \) be an ideal in \(k[x_1, \ldots, x_n] \). Then \(\text{core}(J) \subseteq \text{adj}(J^d) \subseteq \text{core}(J^d) \).

The question of equality has connections to geometry.

Kawamata's Conjecture: Let \(L \) be an ample line bundle on a smooth \(X \subseteq \mathbb{P}^N \) such that \(L \otimes \mathcal{O}_{X,L} \) is ample. Then \(H^0(X, L^d) \neq 0 \).

Proposition 1: Let \(I \) be a monomial ideal in \(k[x_1, \ldots, x_n] \) with a reduction \(J = (x_1^{a_1}, \ldots, x_n^{a_n}) \).

Then \(\text{core}(I) = \text{adj}(J) \) if and only if \(\text{core}(I) = \text{adj}(J) \).

Proof sketch of Proposition 1:

- We show if \(\text{core}(I) = \text{adj}(J) \), then \(\text{core}(I) = \text{adj}(J) \).
- Using Trans. Lemma, if \(J = \text{core}(I) \), then \(b_i = \text{adj}(J) \), and \(I \subseteq L \).
- The point \(p = (a_1, \ldots, a_n) \) is in the convex hull of these \(d \) points. Thus, \(p \in \text{core}(I) \).
- **But,** \(p \not\in \text{adj}(I) \). Therefore, \(\text{core}(I) \neq \text{adj}(I) \).

Case 1: \(J \) is a \(d \)-generated monomial reduction \(J \)

We sandwich \(\text{core}(I) \) between \(J \) and \(\text{adj}(J^d) \) and use translational symmetry.

Example: In \(k[x, y] \), let \(I = (x^2, y^3, y^4, y^5) \). Then \(\text{core}(I) = (x, y^2, y^3, y^4, y^5) \).

Translation Lemma: Let \(I \) be a monomial ideal of \(R \) with a reduction \(J = (x_1^{a_1}, \ldots, x_n^{a_n}) \).

Let \(b_i = (b_{i1}, \ldots, b_{in}) \) and assume \(b_i \geq a_i \). Then for \(i = 2, \ldots, d \), \(b_i \in \text{core}(J) \) if and only if \(b_i \in \text{core}(J) \), where \(b_i = (b_{i1}, \ldots, b_{in}) \).

Case 2: Reduce to reduction number one in \(d = 2 \)

We replace the \(J \) of Case 1 by an ideal \(C \) fulfilling a similar role.

Proposition 2: Let \(I \) be an \(m \)-primary monomial ideal in \(k[x, y] \). Suppose there exists a monomial ideal \(J \) with \(I \subseteq L \subseteq J \) and \(r(J) = 1 \).

Then \(\text{core}(I) \neq \text{adj}(J) \) and \(\text{core}(I) \neq \text{adj}(J) \).

Proof idea for Proposition 2:

- Consider \(L \) pictured left, and \(C \) pictured below.
- Define small polynomials \(x_1^{a_1} + \cdots + x_n^{a_n} \).
- Containment Lemma: \(C \supset \text{core}(I) \).